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For stability analysis of linear periodic systems with more than one degree of
freedom, the Floquet method is a general and valuable, practical method. In
multi-parameter periodic systems, repeated numerical integration to obtain the
Floquet matrix may be a limiting factor, and e!ective sensitivity analysis of
stability characteristics is therefore needed. Analytical "rst and second order
sensitivities of the Floquet matrix and its eigenvalues (multipliers) are presented in
this paper. Some numerical applications are given. These include e!ective
stabilization by proper change of parameters and optimal design with constraints
on stability requirements.

( 2000 Academic Press
1. INTRODUCTION

Stability analysis for even a single, second order, linear di!erential equation with
periodic coe$cients (Mathieu}Hill equation) is rather cumbersome, but di!erent
methods are available. Among these are the method of in"nite determinants [1],
the perturbation method [2], the Galerkin method [3], and the classic Floquet
method (see reference [4] or [5]).

Few of these methods can, from a practical point of view, be extended to
multi-degree-of-freedom (d.o.f.) systems, i.e., to coupled, second order, linear
systems with matrices containing periodic coe$cients. For such extensions see
references [6}8]. It is concluded that the Floquet method is a general and practical
method for systems with multi-d.o.f. See also references [9, 10].

Even with increasing computer power, the large number of numerical
integrations required in this method limits the possibilities; so research with the
goal of carrying out these integrations in the most e!ective way have recently been
sGuest Professor at the Department of Solid Mechanics, Technical University of Denmark,
Lyngby, Denmark.
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90 A. P. SEYRANIAN E¹ A¸.
conducted, see references [11,12]. In the present paper, we shall include sensitivity
analysis in the Floquet method and, by this means, get more information on each
numerical integration performed. This sensitivity analysis is carried out analytically
"rst by "nding the derivatives of the Floquet matrix and then using these to study
the behaviour of eigenvalues of this matrix in the complex plane. For early reference
to sensitivity analysis for non-self-adjoint eigenvalue problems, see reference [13].

The contents of this paper are as follows. First, a short introduction to the
Floquet method is given, followed by the necessary mathematics for deriving "rst
and second order sensitivities, and "nally } examples. The numerical examples
show the versatility of sensitivity analysis with focus on e!ective stabilization by
proper change of parameters and on optimal design of a beam with constraints on
stability requirements.

2. THE FLOQUET METHOD AND THE FLOQUET MATRIX

In this section, we discuss the classical Floquet theory for stability of a system of
linear, homogeneous, di!erential equations with periodic coe$cients. Consider
a system of linear, homogeneous, di!erential equations with periodic coe$cients

x5 "G(t)x, (2.1)

where G(t), t3R, is a real (m]m)-matrix function. The vector x is a column vector
of dimension m. Let G(t) be periodic with minimum period ¹. That is, ¹ is the
smallest positive number for which G (t#¹)"G (t) for all t3R.

Let x
1
(t), x

2
(t) ,2 , x

m
(t) be any set of m solutions to the system (2.1), linearly

independent for any t3R (and thus for all t3R). The matrix X(t) with columns
x
1
(t), x

2
(t) ,2 , x

m
(t) is called a fundamental matrix. If X(0)"I where I is the

(m]m)-identity matrix, X (t) is called a principal fundamental matrix. The
fundamental matrix X (t) is non-singular for all t3R.

If X(t) is a principal fundamental matrix, the matrix given by

F"X (¹) (2.2)

is called the Floquet transition matrix or the monodromy matrix, see reference
[14]. For brevity, we name it the Floquet matrix.

The Floquet matrix F can be computed in a single integration scheme, by
numerically solving the system

y5 "Hy (2.3)

where y is a vector of dimension m2 and H(t) is an (m]m)-matrix of
(m]m)-submatrices

H"

G 0 ) 0

0 G ) )

) ) ) 0

0 ) 0 G

, (2.4)
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where the diagonal submatrices in H(t) are G(t) and the submatrices outside the
diagonal are (m]m)-null matrices. With the initial condition

yT(0)"(1, 0,2, 0; 0, 1,2 , 0; 0, 0, 1,2, 0; 2; 0,2 , 0, 1), (2.5)

the "rst m elements of the solution vector y (¹ ) are the elements of the "rst column
of the matrix F, the next m elements of the solution vector y(¹) are the elements of
the next column of the matrix F, and so on. The initial-value problem consisting of
equations (2.3), (2.4) and (2.5) can be solved numerically by using a routine for
ordinary di!erential equations. This method of calculating the Floquet matrix is
called the &&single-pass scheme'' as the matrix F is found in a single integration pass,
see reference [12]. The matrix F can also be computed by solving the system (2.1)
over one period m times with the m initial conditions being the columns of the unit
matrix I of order m. This method is called the &&m-pass scheme''.

The eigenvalues of F are called the characteristic multipliers for the system (2.1).
To determine the stability of the solutions of the systems (2.1), it is su$cient to
consider the characteristic multipliers. As F is a real (m]m)-matrix, there are
m (complex) characteristic multipliers, counting according to multiplicity. Every
non-real characteristic multiplier has a complex-conjugate characteristic multiplier.
None of the multipliers can take the value 0. Let o

i
, i3M1,2, mN, be the

characteristic multipliers. The stability of the system (2.1) can be settled by using the
following conditions (see reference [14] or [15]):

f If D o
i
D(1 for all i3M1,2 , mN, all solutions are bounded on [0;#R] and all the

solutions tend to zero as tP#R. The trivial solution is (uniformly and
asymptotically) stable in the Lyapunov sense.

f If Do
j
D'1 for at least one j3M1,2 , mN, solutions exist which are unbounded on

[0;#R]. The trivial solution is unstable in the Lyapunov sense.
f If D o

i
D)1 for all i3M1,2, mN and if for those multipliers o

j
, for which D o

j
D"1,

the algebraic multiplicity equals the geometric multiplicity, all the solutions are
bounded on [0;#R]. The trivial solution is (uniformly) stable in the Lyapunov
sense.

f If D o
i
D)1 for all i3M1,2 , mN and if for any of the multipliers o

j
, for which

D o
j
D"1, the algebraic multiplicity is greater than the geometric multiplicity,

solutions exist which are unbounded on [0;#R].The trivial solution is unstable
in the Lyapunov sense.

Recall that algebraic multiplicity n
a

means multiplicity of eigenvalue as a root of
characteristic equation, and geometric multiplicity n

g
means number of linear

independent eigenvectors corresponding to the eigenvalue. Generally n
g
)n

a
.

The conditions on the characteristic multipliers for the existence of periodic
solutions can be summarized as follows (see again reference [14] or [15]):

f If at least one multiplier is equal to 1, ¹-periodic solutions exists.
f If at least one multiplier is equal to !1, 2¹-periodic solutions exist.
f If for at least one multiplier ok

j
"1, where k is an integer, k¹-periodic solutions

exist.
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We conclude that the stability of a system of the form (2.1) is described by the
eigenvalues of the Floquet matrix, see equation (2.2). If all the eigenvalues
(characteristic multipliers) are situated inside the unit circle in the complex plane,
all the solutions turn to zero as tP#R. If any of the characteristic multipliers are
situated outside the unit circle, solutions exist which are unbounded on [0;#R]. If
all the multipliers are inside or on the unit circle, the stability conditions are
determined by the di!erence between the algebraic and the geometric multiplicity
of the multipliers situated on the unit circle. When n

a
"n

g
the system is stable since

all the solutions are bounded, and if n
g
(n

a
the system is unstable due to presence

of solution terms like tke*ut f (t), k"1, 2,2, with f (t) being a periodic function, see
reference [14].

3. FIRST AND SECOND ORDER DERIVATIVES OF THE FLOQUET MATRIX

We consider "rst order linear di!erential equations on fundamental m]m
matrices X and Y with initial conditions

X0 "GX, X(0)"I, (3.1)

Y0 "!GTY, Y (0)"I, (3.2)

where G (t, p)"G(t#¹, p) is a real periodic m]m matrix with period ¹,
continuously depending on time t and smoothly depending on the components of
the vector of parameters p3Rn. The matrix I is the identity matrix.

The solutions X and Y of equations (3.1) and (3.2) satisfy the equality (see
reference [16])

XT(t)Y(t)"I (3.3)

which can be veri"ed by direct di!erentiation of equation (3.3) and use of equations
(3.1) and (3.2). According to equation (3.3) we get

X~1"YT.

For the examples considered in this paper, inversion of the principal fundamental
matrix proves to be much more e$cient than solving the adjoint system (3.2).

Consider an increment of the vector of parameters p in the form

p"p
0
#ee (3.4)

where e is a small positive number and e is an arbitrary vector in the parameter
space Rn of unit norm EeE"Je2

1
#e2

2
#2#e2

n
"1. Then the G matrix takes

the increment

G(t, p)"G(t, p
0
)#eG

1
(t, p

0
, e)#e2G

2
(t, p

0
, e)#2, (3.5)
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where

G
1
"

n
+
k/1

LG
Lp

k

e
k
, (3.6)

G
2
"

1
2

n
+

i, j/1

L2G
Lp

i
Lp

j

e
i
e
j
. (3.7)

For convenience, the notation G
0
"G(t, p

0
) will be used.

Due to perturbation of the G matrix the solution to equation (3.1) takes an
increment which is an analytical function of e (see reference [16]),

X(t)"X
0
(t)#eX

1
(t)#e2X

2
(t)#2 . (3.8)

At the end of the period ¹ we obtain the Floquet matrix

F"X (¹)"X
0
(¹)#eX

1
(¹)#e2X

2
(¹)#2 . (3.9)

To "nd the coe$cients X
0
(¹ ), X

1
(¹ ), X

2
(¹) ,2 of this expansion a perturbation

technique is used. Substituting the expansions (3.8), (3.5) into equation (3.1), we
obtain a chain of equations

X0
0
"G

0
X

0
, X

0
(0)"I, (3.10)

X0
1
"G

0
X

1
#G

1
X

0
, X

1
(0)"0, (3.11)

X0
2
"G

0
X

2
#G

1
X

1
#G

2
X

0
, X

2
(0)"0, (3.12)

i.e., in general

X0
n
"

n
+
i/0

G
i
X

n~i
, X

n
(0)"0, n'0. (3.13)

From equation (3.10) we "nd X
0
(t)"X (t, p

0
).

Denoting Y
0
(t)"Y (t, p

0
), we premultiply equation (3.11) by YT

0
and integrate

over the time [0, t]

P
t

0

YT
0
X0

1
dq"P

t

0

YT
0
G

0
X

1
dq#P

t

0

YT
0
G

1
X

0
dq. (3.14)

Using integration by parts, we represent the left-hand side of equation (3.14) in the
form

P
t

0

YT
0
X0

1
dq"YT

0
X

1
Dt
0
!P

t

0

Y0 T
0
X

1
dq"YT

0
(t)X

1
(t)#P

t

0

YT
0
G

0
X

1
dq. (3.15)

Here we have used the initial condition X
1
(0)"0 and equation (3.2) for Y

0
.
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Comparing equations (3.14) and (3.15), we "nd

YT
0
(t)X

1
(t)"P

t

0

YT
0
G

1
X

0
dq (3.16)

We premultiply this equation by X
0
(t) and, with the use of equation (3.3), which

implies X
0
(t)YT

0
(t)"I, we get

X
1
(t)"X

0
(t) P

t

0

YT
0
G

1
X

0
dq. (3.17)

So, at the end of the period t"¹, we have

X
1
(¹)"X

0
(¹) P

T

0

YT
0
G

1
X

0
dq. (3.18)

Substituting here the expression for G
1

from equation (3.6) and using the notation
F
0
"X

0
(¹), we "nd

X
1
(¹)"

n
+
k/1
CF0 P

T

0

YT
0

LG
Lp

k

X
0
dqD e

k
. (3.19)

We have found the "rst directional (Gateaux) derivative of the Floquet matrix

X
1
(¹)"lim

e?0

F(p
0
#ee)!F(p

0
)

e
. (3.20)

Due to linearity of the right-hand side of equation (3.19) with respect to the vector
e and its continuity in p, common (FrecheH t) derivatives also exist [17]. Using
equations (3.19), (3.20), we can take Dp

k
"ee

k
and write the "rst order

approximation of the Floquet matrix in the form

F(p
0
#Dp)"F

0
#

n
+
k/1

LF
Lp

k

Dp
k
#2, (3.21)

where the derivatives LF/Lp
k

are given by the expressions

LF
Lp

k

"F
0 P

T

0

YT
0

LG
Lp

k

X
0
dt, k"1,2 , n. (3.22)

To "nd the second order terms in the expansions (3.8) and (3.9) we premultiply
equation (3.12) by YT

0
and integrate over time [0, t]

P
t
YT

0
X0

2
dq"P

t
[YT

0
G

0
X

2
#YT

0
G

1
X

1
#YT

0
G

2
X

0
] dq. (3.23)
0 0
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Using integration by parts, the initial condition X
2
(0)"0 and equation (3.2) for Y

0
we obtain

P
t

0

YT
0
X0

2
dq"YT

0
X

2
Dt
0
!P

t

0

Y0 T
0
X

2
dq"YT

0
(t)X

2
(t)#P

t

0

YT
0
G

0
X

2
dq (3.24)

Comparing the right-hand sides of equations (3.23), (3.24) and using equation (3.3)
yields

X
2
(t)"X

0
(t) CP

t

0

YT
0
G

1
X

1
dq#P

t

0

YT
0
G

2
X

0
dqD . (3.25)

We substitute here the expression (3.16) for X
1

and obtain

X
2
(t)"X

0
(t)CP

t

0

YT
0
G

1
X

0A P
q

0

YT
0
G

1
X

0
dfB dq#P

t

0

YT
0
G

2
X

0
dqD . (3.26)

Taking t"¹ we have the second order term in the expansion of the Floquet matrix

X
2
(¹)"X

0
(¹)CP

T

0

Y0 T
0
G

1
X

0A P
q

0

YT
0
G

1
X

0
dfB dq#P

T

0

YT
0
G

2
X

0
dqD (3.27)

Now we substitute in equation (3.27) the expressions (3.6) and (3.7) for G
1

and G
2

and get

X
2
(¹)"X

0
(¹)

n
+

i, j/1
CP

T

0

YT
0

LG
Lp

i

X
0 AP

q

0

YT
0

LG
Lp

j

X
0
dmB dq

#

1
2 P

T

0

YT
0

L2G
Lp

i
Lp

j

X
0
dqD e

i
e
j
. (3.28)

This is the second order directional derivative of the Floquet matrix divided by 2.
From this formula we immediately derive the second order Frechet derivative of
the Floquet matrix

L2F
Lp

i
Lp

j

"F
0 CP

T

0

YT
0

L2G
Lp

i
Lp

j

X
0
dq#P

T

0

YT
0

LG
Lp

i

X
0 AP

q

0

YT
0

LG
Lp

j

X
0
dfB dq

#P
T

0

YT
0

LG
Lp

j

X
0 AP

q

0

YT
0

LG
Lp

i

X
0
dfB dqD . (3.29)
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4. SENSITIVITY ANALYSIS OF MULTIPLIERS

Consider an eigenvalue problem for the Floquet (m]m)-matrix depending on
a vector of real parameters p3Rn,

Fu"ou. (4.1)

As the coe$cient matrix G in equation (2.1) is a real matrix, the Floquet matrix is
a real non-symmetric matrix. We assume that at "xed p"p

0
, o

0
is a simple

eigenvalue of the Floquet matrix (a multiplier), complex or real. Our aim is to know
what will happen to the multiplier o

0
with a change of parameters in the vicinity of

the point p
0
. For this purpose we take an increment of the initial vector of the form

p"p
0
#ee, (4.2)

where e is a small positive number and e is an arbitrary vector in the parameter
space of the unit norm e3Rn, EeE"1. Due to a change of parameters the Floquet
matrix will take an increment which, with the use of the results of section 3, can be
given in the form

F"F
0
#eF

1
#e2F

2
#2, (4.3)

where, according to equations (3.18) and (3.28), we have

F
0
"F(p

0
), F

1
"F

0

n
+
k/1
CP

T

0

YT
0

LG
Lp

k

X
0
dqD e

k

F
2
"F

0

n
+

i, j/1
C
1
2 P

T

0

YT
0

L2G
Lp

i
Lp

j

X
0
dt#P

T

0

YT
0

LG
Lp

i

X
0 CP

q

0

YT
0

LG
Lp

j

X
0
dmDdqD e

i
e
j
.

(4.4)

Then the multipliers o and the corresponding eigenvectors u take some increments.
According to the perturbation theory of non-self-adjoint operators in the case of
simple eigenvalues, these increments can be expressed as series in integer powers
of e

o"o
0
#eo

1
#e2o

2
#2,

u"u
0
#eu

1
#e2u

2
#2. (4.5)

For the following we need to introduce a left eigenvector v
0
, corresponding to o

0
,

de"ned by

vT
0
F
0
"o

0
vT
0
, (4.6)
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We assume that it satis"es the normality condition

vT
0
u"1. (4.7)

For given u
0

this equality de"nes v
0

uniquely. We take the normality condition for
a perturbed eigenvector u in the form

vT
0
u"1. (4.8)

Substituting the expansions (4.5) for u and o in equations (4.1) and (4.8) yields

[F
0
!o

0
I]u

0
"0, (4.9)

[F
0
!o

0
I]u

1
"![F

1
!o

1
I]u

0
, (4.10)

[F
0
!o

0
I]u

2
"![F

1
!o

1
I]u

1
![F

2
!o

2
I]u

0
(4.11)

with the normality conditions

vT
0
u
i
"0, i"1, 2,2 (4.12)

Solving equations (4.10) and (4.12) with equations (4.6), (4.7) and (4.9), we "nd "rst
the unknown coe$cients of the linear expansions in equation (4.5)

o
1
"vT

0
F
1
u
0
, (4.13)

u
1
"!C~1

0
[F

1
!o

1
I]u

0
"!C~1

0
F
1
u
0
#vT

0
F
1
u
0
)C~1

0
u
0
, (4.14)

where

C
0
"F

0
!o

0
I!v6

0
vT
0
. (4.15)

The vector v6
0

is the complex conjugate of the left eigenvector v
0
.

It is shown by reference [16] that the matrix C
0

is non-singular (det C
0
O0), and

the vector u
1

given by equation (4.14) satis"es the normality condition (4.12) and is
unique.

Multiplying equation (4.11) by vT
0

and using the normality conditions (4.7) and
(4.12), we obtain

o
2
"vT

0
F
1
u
1
#vT

0
F
2
u
0
. (4.16)

Using here the expression for u
1

from equation (4.14), we "nd

o
2
"!vT

0
F
1
C~1

0
F
1
u
0
#vT

0
F
1
u
0
) vT

0
F
1
C~1

0
u
0
#vT

0
F
2
u
0
. (4.17)
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From equations (4.11) and (4.14) we determine the vector u
2
,

u
2
"!C~1

0
[F

1
!o

1
I]C~1

0
[F

1
!o

1
I]u

0
!C~1

0
[F

2
!o

2
I]u

0
, (4.18)

where o
1

and o
2

are given by equations (4.13) and (4.17) respectively. Doing similar
steps, we can "nd higher order sensitivities o

3
, u

3
, o

4
, u

4
and so on.

Using equations (4.13) and (4.17), we can write "rst and second order derivatives
of simple multipliers o in the form

Lo
Lp

i

"vT
0

LF
Lp

i

u
0
, (4.19)

L2o
Lp

i
Lp

j

"vT
0

L2F
Lp

i
Lp

j

u
0
#vT

0

LF
Lp

i

u
0
vT
0

LF
Lp

j

C~1
0

u
0
#vT

0

LF
Lp

j

u
0
vT
0

LF
Lp

i

C~1
0

u
0

!vT
0

LF
Lp

i

C~1
0

LF
Lp

j

u
0
!vT

0

LF
Lp

j

C~1
0

LF
Lp

i

u
0
. (4.20)

We emphasize that to "nd "rst and second order derivatives of simple multipliers
we only need information at p"p

0
: the eigenvectors u

0
and v

0
, the matrix C

0
from

equation (4.15) and "rst and second order derivatives of the Floquet matrix given in
equations (3.22) and (3.29).

Using equations (4.4) and (4.6), we obtain from equation (4.13)

o
1
"o

0

n
+
k/1

vT
0 CP

T

0

YT
0

LG
Lp

k

X
0
dqD u

0
e
k
. (4.21)

If we introduce vectors r and g with the components, de"ned by

r
k
#ig

k
"o

0
vT
0 CP

T

0

YT
0

LG
Lp

k

X
0
dqD u

0
, k"1,2 , n (4.22)

then o
1

can be given in the form

o
1
"(r, e)#i (g, e). (4.23)

Here after round brackets mean scalar product in Rn : (a, b)"+n
i/1

a
i
b
i
.

Multiplying equation (4.23) by e and using notation ee"Dp, we can write an
increment of o in the form

o"o
0
#(r, Dp)#i (g, Dp)#1

2
(RDp, Dp)# *

2
(QDp, Dp)#o(EDpE2) (4.24)

where the vectors r and g are gradients of real and imaginary parts of o, and the
matrices R and Q are real and imaginary parts of matrix of second order derivatives
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of o (4.20). It should be noted that the vectors r and g and the matrices R and
Q depend only on information at the initial point p

0
and do not depend on the

vector of variation Dp. If we take any direction in the parameter space Dp, a simple
multiplier o will move in the complex plane according to equation (4.24).

Using equations (4.22) and (4.24), we can also "nd a gradient vector of the
absolute value of a multiplier o"a#iu. Taking derivatives, we obtain

L Do D
Lp

k

"

LJa2#u2

Lp
k

"

1

Ja2#u2 Aa
La
Lp

k

#u
Lu
Lp

k
B"

1
D o D

(r
k
Reo#g

k
Imo)"f

k
.

(4.25)

The vector f with the components f
k
, k"1,2 , n, is the gradient vector of absolute

value of a multiplier o. According to equation (4.25), we have

f"
Re o
Do D

r#
Im o
Do D

g. (4.26)

If we take any direction in the parameter space Dp, such that (f, Dp)(0, then for
small EDpE, the absolute value of o will decrease. The direction Dp"!f is the
steepest direction in the parameter space to diminish D o D, see Figure 1.

Having derived the gradients r, g, f in equations (4.22), (4.25), (4.26), and second
order derivatives in equation (4.20), we can use these in numerical calculations to
minimize the absolute values of multipliers with D o D'1 to bring them into the unit
circle, i.e., to stabilize the system. It is also natural to use gradients in optimization
problems with the stability constraints or criteria. These will be shown in the
following two sections.
Figure 1. Stabilization of the system by bringing multipliers into the unit circle.
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It should be noted that in this section we have considered only simple (i.e.,
di!erentiable) multipliers. Sensitivity analysis of multiple eigenvalues is more
complicated. For details, see reference [18].

5. NUMERICAL APPLICATIONS

In this section, a numerical example involving the equations for the "rst and
second order derivatives of the Floquet matrix is presented. First a computer
program that can compute the Floquet matrix and the derivatives of the Floquet
matrix is described. Then the problem of optimizing the thickness distribution of an
axially loaded beam where the axial load is periodic function of time is considered.
An attempt to solve this problem can be found in reference [19]. The object of the
optimization is to make the beam more stable by changing the thickness
distribution for the beam under the constraint of constant volume. The transverse
vibrations of the beam are described by a partial di!erential equation and
boundary conditions. These equations are approximated by a "nite system of
ordinary di!erential equations by using the "nite di!erence method.

5.1. THE COMPUTER PROGRAM

We consider problems described by a system of di!erential equations of the form

MxK#Cx5 #Sx"0, (5.1)

where the matrices M, C and S are periodic with period ¹. Equation (5.1) can be
written in "rst order form

y5 "G (t)y, (5.2)
where

y"A
x
x5 B , G"C

0
!M~1S

I
!M~1CD , G(t#¹)"G(t). (5.3)

The theory in the previous sections can thus be applied to systems in the form (5.1).
In the equations for the "rst and second order derivatives of the Floquet matrix, the
"rst and second order derivatives of the coe$cient matrix G are used. From
equation (5.3) it is seen that the information needed to "nd the "rst and second
order derivatives of the coe$cient matrix G with respect to the parameters is the
matrices M, C, S and M~1 and the "rst and second order derivatives of the matrices
M, C and S with respect to the parameters. A computer program that computes the
Floquet matrix and the derivatives of the Floquet matrix is constructed. The
matrices M, C and S and the "rst and second order derivatives of the matrices M,
C and S with respect to the parameters are the input to the programme. It is
convenient to consider M, C and S and the derivatives of these matrices as the input
to the programme as it can be di$cult to "nd explicit expressions for the coe$cient
matrix G and the derivatives of the coe$cient matrix. Once the derivatives of the
Floquet matrix have been computed, the existing sensitivity analysis of simple
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eigenvalues can be applied. If both the "rst and second order derivatives of the
Floquet matrix have been computed, the "rst and second order derivatives of the
eigenvalues of the Floquet matrix can be computed.

5.2. AN AXIALLY LOADED BEAM

Consider the straight beam of length ¸ in Figure 2. The beam is axially loaded at
one end with a force p cos(ut).

The beam is externally damped, and c is the external viscous damping coe$cient.
The de#ection of the beam at position x is w(x, t). The equation for transverse
vibrations of the beam is

oA
L2w
Lt2

#c
Lw
Lt

#

L2

Lx2 AEI
L2w
Lx2B#p cos(ut)

L2w
Lx2

"0. (5.4)

where E is Young's modulus, I(x) is the cross-sectional moment of inertia, o is the
density and A(x) is the cross-sectional area. The beam has circular cross-section.
Thus, the area and the cross-sectional moment of inertia are

A"nr2(x), I (x)"
nr4 (x)

4
, (5.5)

where r(x) denotes the radius of the beam at position x. As the beam is simply
supported at both ends, the boundary conditions are

w D
x/0,L

"0, EI
L2w
Lx2 K

x/0,L

"0. (5.6)

Equations (5.4) and (5.6) describe the transverse vibrations of the axially loaded
beam. Let < be the volume of the beam. The critical buckling force and the "rst
natural frequency of a simply supported uniform beam of circular cross-section and
volume < are

P
c, uniform

"

nE<2

4¸4
, u

c, uniform
"

n
2¸2S

E<n
o¸

. (5.7)
Figure 2. An axially loaded beam. The beam is externally damped.
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The dimensionless excitation amplitude q and the dimensionless excitation
frequency X are introduced by

q"
p

P
c, uniform

, X"

u
u

c, uniform

. (5.8)

The following dimensionless quantities are introduced for the de#ection: the beam
co-ordinate, the time, the radius, and the damping, which are respectively,

l"
w
¸

, f"
x
¸

, q"ut, R"rS
n¸
<

, c"
2c¸4

n2<2S
n<
o¸E

. (5.9)

Inserting equations (5.7)}(5.9) into equation (5.4) yields

R2X2
L2l
Lq2

#cX
Ll
Lq

#

1
n4

L2

Lf2 AR4
L2l
Lf2B#

q
n2

cos (q)
L2l
Lf2

"0. (5.10)

The boundary conditions (5.6) become

lDm/0,1
"0 and R4

L2l
Lm2 Kf/0,1

"0. (5.11)

Equations (5.10) and (5.11) describe the transverse vibrations of the axially loaded
beam. The partial di!erential equation (5.10) and the boundary conditions (5.11)
can be reduced to a system of ordinary di!erential equations in the form (5.1) by
using the "nite di!erence method, see reference [20]. We consider a beam
consisting of m elements of equal length, each with a constant radius. The radii are
R

i
, i3M1,2 , mN.

5.3. THE OPTIMIZATION PROBLEM

The "rst two regions of instability are considered. Figure 3 shows the instability
regions for the "rst two modes for a uniform beam. These instability regions are
parameter resonance regions, see reference [1]. At the boundaries of the instability
regions, one of the characteristic multipliers is equal to !1. Let o

c
be the

characteristic multiplier equal to !1 at the boundaries.
From Figure 3 it is seen that the instability region for the "rst mode occurs in the

neighbourhood of twice the "rst natural frequency of the beam. The instability
region of the second mode occurs in the neighbourhood of twice the second natural
frequency of the beam.

When damping is included, the length of the unstable parameter frequency
interval goes to zero as the excitation amplitude q goes to some value q

c
greater

than zero, see Figure 3. The object of the optimization is to maximize the excitation
amplitude q

c
belonging to an instability region by changing the thickness

distribution of the beam under the constraint of constant volume.



Figure 3. A part of the stability diagram for a uniform beam. Instability is indicated by dots. The
beam is externally damped and the damping coe$cients is c"0)20.
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Let U denote the objective function in the optimization problem. That is, U is
equal to the minimum critical value of the excitation amplitude of a parameter
resonance region

U"q
c
. (5.12)

The objective function (5.12) only makes sense if the system is damped because, for
an undamped system, the objective function (5.12) is equal to zero, independent of
the design parameters. The design is optimal if U is maximized. Note that the
maximum U can be attained not only at one, but at two or more modes, see Figures 3
and 4.

The objective function U is maximized by using sequential linear programming
and the simplex method. In this optimization process, the sensitivities of the objective
function U with respect to the design variables R

i
are used. Let X

c
be the boundary

frequency at q"q
c
. At the point (X, q)"(X

c
, q

c
), the eigenvalues o

c
satis"es

o
c
"!1,

Lo
c

LX
"0 and

Lo
c

Lq
(0. (5.13)

The eigenvalue o
c
depends on the excitation frequency X, the excitation amplitude

q and the design variables R
i
. Taking general variations of the eigenvalue o

c
yields

do
c
"

Lo
c

LX
dX#

Lo
c

Lq
dq#

m
+
j/1

Lo
c

LR
j

dR
j
. (5.14)
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This equation is valid due to di!erentiability of o
c
at (X, q)"(X

c
, q

c
). Let dR

j
"0

for jOi. By using equation (5.13) and as do
c
"0 at (X

c
, q

c
), equation (5.14) yields

Lo
c

Lq
dq

c
#

Lo
c

LR
i

dR
i
"0 at (X, q)"(X

c
, q

c
). (5.15)

From equation (5.15), the sensitivity of the minimum critical load level with respect
to the design parameter R

i
is

Lq
c

LR
i

"!

Lo
c
/LR

i
Lo

c
/Lq K

(X, q)/(Xc, qc)

(5.16)

Let F denote the Floquet matrix. Using the sensitivity analysis for simple
eigenvalues, we have

Lo
c

Lq
"

vT (LF/Lq) u
vTu

,
Lo

c
LR

i

"

vT (LF/LR
i
) u

vTu
. (5.17)

By normalization (4.7), the denominator will be 1. The vectors u and v are the
eigenvector and the adjoint eigenvector of F, respectively, corresponding to the
eigenvalue o

c
. By inserting equation (5.17) into equation (5.16), the sensitivity of the

minimum critical load level is

Lq
c

LR
i

"

vT (LF/LR
i
)u

vT (LF/Lq)u K
(X, q)/(Xc, qc)

(5.18)

The sensitivity of the objective function (5.12) is

LU/LR
i
"Lq

c
/LR

i
, (5.19)

where the sensitivities of the minimum critical load level are given by equation
(5.18). If the design variables R

i
are changed by an amount DR

i
, the linear

increment *q
c
of the minimum critical load level q

c
is

Dq
c
"

m
+
i/1

Lq
c

LR
i

DR
i
. (5.20)

The volume of the beam is kept constant during the optimization. This volume
constraint becomes

m
+
i/1

R2
i
"m (5.21)

where m is the number of beam elements. The problem of maximizing the objective
function is reduced to a sequence of linear optimal redesign problems, and these are
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solved by using the simplex method. In each of the linear optimal redesign
problems, the value of the objective function U is evaluated.

The value of the objective function U can be determined by utilizing the fact that,
at the point (X, q)"(X

c
, q

c
), the eigenvalue o

c
satis"es

o
c
"!1 and Lo

c
/LX"0. (5.22)

To "nd the minimal critical excitation amplitude q
c
, the Newton}Raphson method

is applied and it is necessary to know the "rst and second order derivatives of the
eigenvalue o

c
with respect to q and X. In order to compute the "rst and second

order derivatives of the eigenvalue o
c
with respect to q and X, the "rst and second

order derivatives of the Floquet matrix must be evaluated. In the optimization
process, the "rst order derivatives of the objective function with respect to the
design variables R

i
are used, see equation (5.18).

5.4. THE RESULTS OF THE OPTIMIZATION

A beam divided into 25 elements and discretized by the "nite di!erence method,
see reference [20], is considered. The beam is externally damped and the damping
coe$cients is c"0)20. The results presented here are obtained by maximizing the
objective function U of equation (5.12). The design variables are constrained by

R
i
*0)50 (5.23)

and the uniform beam is taken as the initial design. First, the beam is optimized
with respect to the instability region for the "rst mode, see Figure 3 and the optimal
design in Figure 4 is obtained.

The constraints in equation (5.23) are active for the two elements at each end of
the beam. In Table 1 the values of X

c
and q

c
for the instability regions for the "rst

two modes for the beam in Figure 4 are compared with the values of X
c
and q

c
for

the uniform beam.
The objective function Umode1 is 8)4% higher for the beam in Figure 4 than for

the uniform beam. When Umode1 is maximized, the value of Umode2 decreases below
the value for a uniform beam, see Table 1.

If the beam is optimized with respect to the instability region for the second
mode, the optimal design in Figure 5 is obtained.

The constraints in equation (5.23) are active for the element at the middle of the
beam.

According to Table 2, the objective function Umode2 is 8)3% higher for the beam
in Figure 5 than for the uniform beam. When Umode2 is maximized, the value of
Umode1 decreases below the value for a uniform beam, see Table 2.

If the beam is optimized with respect to both the instability region for the "rst
and the second modes, the optimal design in Figure 6 is obtained.

None of the constraints in equation (5.23) is active for the beam in Figure 6.



Figure 4. The optimal design of the beam when c"0)20 and the beam is discretized by the "nite
di!erence method. The objective function U is related to the instability region for the "rst mode. The
uniform beam is taken as the initial design.

TABLE 1

¹he values of X
c
and q

c
for the instability regions of the ,rst and second modes when

the beam is optimized with respect to the objective function U and the instability region
for the ,rst mode

Design Xmode1
c

qmode1
c

"Umode1 Xmode2
c

qmode2
c

"Umode2

Uniform 1)9826 0)3998 7)9542 0)4000
Optimal 2)1803 0)4332 7)9582 0)3850
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According to Table 3, the objective functions Umode1 and Umode2 are raised by 4)5
and 4)4%, respectively, relative to the values for the uniform beam.

The optimal designs in Figures 4 and 6 look very similar to the optimal designs
obtained by reference [21], where the volume of a beam is minimized while the "rst
and the two "rst natural frequencies of the beam, respectively, are kept constant.
The optimal design in Figure 5 looks very similar to the optimal designs obtained
in reference [21], where the second natural frequency is maximized while keeping
the volume of the beam constant.



Figure 5. The optimal design of the beam when c"0)20 and the beam is discretized by the "nite
di!erence method. The objective function U is related to the instability region for the second mode.
The uniform beam is taken as the initial design.

TABLE 2

¹he values of X
c
and q

c
for the instability regions of the ,rst and second modes when

the beam is optimized with respect to the objective function U and the instability region
for the second mode

Design Xmode1
c

qmode1
c

"Umode1 Xmode2
c

qmode2
c

"Umode2

Uniform 1)9826 0)3998 7)9542 0)4000
Optimal 1)6877 0)3339 8)7200 0)4331
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5.5. STABILIZATION OF AN UNSTABLE SYSTEM: AN EXAMPLE

We shall show how to stabilize an unstable system by changing the values of the
parameters. As an example the results are applied to the Carson}Cambi equation,
treated in reference [22]. This equation is

(1#p
1
cos t)

d2y
dt2

#p
2
y"0. Dp

1
D(1 (5.24)

with p
1
, p

2
as the problem parameters.



Figure 6. The optimal design of the beam when c"0)20 and the beam is discretized by the "nite
di!erence method. The objective function U is related to the instability regions for the "rst and the
second modes. The uniform beam is taken as the initial design.

TABLE 3

¹he values of X
c
and q

c
for the instability regions of the ,rst and second modes when

the beam is optimized with respect to the objective function U and the instability
regions for the ,rst and second modes

Design Xmode1
c

qmode1
c

"Umode1 Xmode2
c

qmode2
c

"Umode2

Uniform 1)9826 0)3998 7)9542 0)4000
Optimal 2)0771 0)4177 8)4030 0)4177
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Inside the unstable domains, at least one characteristic multiplier o is situated
outside the unit circle. That is

D o D'1. (5.25)

To stabilize the system, all the multipliers outside the unit circle must be brought
onto or inside the unit circle. Let o be a multiplier situated outside the unit circle.
The modulus of o depends on the parameters p"(p

1
, p

2
), and if dp

i
is chosen
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according to

dp
i
"!k

LDo D
Lp

i

, (5.26)

where k is a real positive constant, then we get

d Do D"!k
2
+
i/1
A
L Do D
Lp

i
B
2
)0. (5.27)

Thus, by choosing the parameter change according to equation (5.26), the change of
D o D is smaller than or equal to zero and the system is made &&more'' stable.

The necessary formula for calculating the sensitivities is given by equation (4.11).
The implementation in a computer program gave the results shown in Figure 7
with part of the stability diagram for the Carson}Cambi equation (5.24).

Comparing the result in Figure 7 with the detailed stability diagram in reference
[22], we see that the paths follow the steepest descent of Do D. In a multi-d.o.f. system,
the procedure will be the same as illustrated here.
Figure 7. A part of the stability diagram for the Carson}Cambi equation. Instability is indicated by
dots. The paths from instability to stability for the two points (p

1
, p

2
)"(0)70, 0)25) and

(p
1
, p

2
)"(0)70, 0)20) are shown.



110 A. P. SEYRANIAN E¹ A¸.
6. CONCLUSION

For stability analysis of linear periodic systems with multi-d.o.f., the classic
Floquet method is a general and practical method. However, for a multi-parameter
analysis, this procedure limits our possibilities due to the extensive numerical
integration necessary to obtain the Floquet transition matrix.

We derived explicit analytical expressions for the derivatives of the Floquet
matrix and its eigenvalues (multipliers) with respect to problem parameters. This is
what we call sensitivity analysis. It allows us to extract full information of
dependence on parameters using only a single numerical integration. With these
new results, optimization of multi-parameter, multi-d.o.f. systems is possible.

As an example, we study the optimization of the thickness distribution for
a beam subjected to parametric excitation. Another example shows the application
of sensitivity results in a procedure for e!ective stabilization of an unstable system.

To keep the paper short, we have restricted the sensitivity analysis to simple
multipliers. More extensive analysis with multiple multipliers will be presented in
a following paper. Adding sensitivity analysis, the Floquet method constitutes
a practical method that can be applied also to multi-parameter, multi-d.o.f.
systems.

REFERENCES

1. V. V. BOLOTIN 1964 ¹he Dynamic Stability of Elastic Systems. San-Francisco, U.S.A.:
Holden-Day.

2. A. H. NAYFEH and D. T. MOOK 1979 Nonlinear Oscillations. New York: John Wiley
& Sons.

3. P. PEDERSEN 1985 Quarterly of Applied Mathematics 42, 477}495. On stability diagrams
for damped Hill equations.

4. G. FLOQUET 1883 Annales de ED cole Normal Superior, Paris, 2, 47}89. Sur les Equation
Di!eH rentielles LineH aires à Coe$cients PeH riodiques.
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